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We show that the three-wave mixing interaction in media with quadratic nonlinearity, and
dispersion up to the second order, possess classes of mutually sustained periodical nonlinear traveling
waves and domain walls (or kink pairs). We also predict a particular kind of Benjamin-Feir, or
modulational instability. This mechanism may also affect the stability of certain classes of localized

waves.

These phenomena have importance in different branches of physics whenever parametric

interactions may occur through gquadratic nonlinearities.

PACS number(s): 03.40.Kf, 42.50.Ne, 42.50.Rh, 42.65.Ky

The concept of nonlinear localized waves and solitons
is ubiquitous in physics. Nonlinear optics offers unique
opportunities to investigate the propagation of solitons
in cubic media [i.e., described by nonlinear Schrédinger-
like equations (NLSEs) [1,2]], sine-Gordon solitons of self-
induced trasparency [3], and solitons of the dispersive
three-wave mixing (TWM) interaction [4-6]. In particu-
lar, the TWM equations are widespread as model equa-
tions of mixing phenomena due to gquadratic nonlinear-
ities in different branches of physics such as plasmas,
water, or acoustic waves [6]. Although we specifically
refer to the case of degenerate TWM [7] between a first
and second harmonic in optics, the concepts which follow
may be extended to nondegenerate processes also in other
physical contexts. TWM equations are integrable only in
the presence of first-order dispersion (i.e., group-velocity
mismatch) [4-7]. Although, one may suspect that such
integrability may be lost when dispersion at second order
is accounted for, TWM admits the existence of localized
bright and dark solitary wave forms [8-11]. These lo-
calized waves are the object of renewed interest in view
of their potential application exploiting their nonlinear
phases in all-optical switching [12], and at power levels
strongly reduced with respect to localized waves of cu-
bic media (described, e.g., by nonintegrable NLSEs [2]).
In this paper we show that TWM possesses a particu-
lar class of nonlinear waves in the presence of both first-
and second-order dispersion. They are periodic travel-
ing waves (bright and dark waves are particular cases)
and domain walls between the nonlinear eigenmodes of
the process. As we will show, these waves are also rele-
vant in the context of field theory. We further show that
second-order dispersion is responsible for a mechanism of
instability, which involves the generation of two sideband
pairs, and is reminiscent of the Benjamin-Feir, or modu-
lational instability (MI), known so far only for cubic non-
linearities [13,14]. MI may also lead to the spontaneous
breaking of dark and kink solitary pairs into organized
patterns.

In a transparent dispersive medium with quadratic
nonlinearity the slowly varying field envelopes A;, =
Aj2(2,t), at frequencies of wp, and 2wy, respectively,
obey the coupled partial differential equations [9-11]
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where Ak = k(2wo) — 2k(wo) is the wave vector mis-

match, 8’ = k' (2wo) — k' (wo) = dk/dw|2w, — dk/dw|., is
the group-velocity mismatch (i.e., first-order dispersion),
,61 o = d?ky 2/dw?|u, 2w, is the second-order dispersion, x
is the nonlinearity coefficient, and the time ¢ is measured
in a frame moving at velocity [k’'(2wo) + k' (wo)]/2. Intro-
ducing the new dimensionless variables ¢ = z|B8Y|/t2 =
z/zq, 0 = t/to (zq is the dispersion length associated to
the time scale tg), u; = v/2xzaA1, uz = xzqAsz, Eags. (1)
may be casted in Hamiltonian form as

Buj . 6H

—a? = 'Lau; (] = 1’2) P (2)

where H = fj;o Hdo and H is the Hamiltonian density

H = H(uj,u}, uj5,u5 )
_ u2u§e—z5k£ + (u%)*’u,zewkﬁ
2 2
+lez [( 1)’ (tuj,0u; — iuf ju;) + _,8]|u2#a|] ,
(3)

where 0k = Akzq, $1 = sgn(By), B2 = B4/6{, and § =
B'z4/to. Equations (1)—(3) also govern the interaction of
cw beams focused in one transverse dimension (i.e., o)
with 8/ = 1/2k;, and 8’ due to birefringence walk off.

To obtain the traveling (i.e., periodic or localized)
waves of Egs. (2) and (3) we seek for solutions in the
usual form

w(§,0) = 2(1)EHEN | us(g,0) = y(r)e €, ()

where x and y are real functions of 7 = o — v{ and
¢1 = € +vo, dp2 = u2€ +2vo depends linearly on space
and time. We obtain the two coupled equations -
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2
= 2 b -z, 2']=ﬂ%[92y—w—], (5)

2

where the dot stands for 8/97, and where we set v =
8/(2B2 — B1), v = 8(2B2 + $1)/[2(2B2 — £1)] in order to
cancel first-order dispersive terms, and 2u; — py = 6k
which permits us to eliminate the dependence on &.
91 = p + 611/2 + ,811/2/2 and 92 = M2 — ov + 2,321/2
represent second-order corrections of (w1, ) due to the
frequency shift (v,2v). We emphasize that Eq. (5)
and its solutions have a wide interest, beyond TWM,
in field theory. In fact, invariant traveling-wave solu-
tions to coupled fields which evolve according to either
complex Schrodinger and real Klein-Gordon equations,
or real and complex Klein-Gordon equations obey Eg.
(5) with a proper redefinition of the parameters [15].
Without any loss of generality we renormalize Eq. (5)
in order to deal with a single parameter. Henceforth
we consider only anomalous dispersions (i.e., 8; = 1,
B2 > 0) since the extension to the normal dispersion
regime follows from the trivial invariant transformation
(B1,2,01,2,2,y) = (—=P1,2, 012, —z,—y) of Eq. (5). Af-
ter rescaling Eq. (5) as

z = z(02|/+/ B2, y — y|62]/B2, T — T/B2/|02], (6)

we cast Eq. (5) in the canonical Hamiltonian form = =
OH;/0p, , pr = —0H2/dzx (and identical with z — y),
where the momentum (p.,py) = (£,9), and H; reads as

3

2 2
H; = Hz(2,y,pe,Py) = Igjzﬁ +V(z,y). (7
Here V(z,y) = —0z2—ny?+z2y, where n = 05 /|62| = %1,
is a nonintegrable potential of the Hénon-Heilis fam-
ily [16] which depends on the single parameter § =
0182/(B1|02]). Hence, though the Hamiltonian (7) may
exhibit chaotic trajectories, a class of bounded periodi-
cal evolutions on a torus and separatrices correspond to
periodical and solitary waves of Eq. (1), respectively. A
subset of these solutions may be obtained explicitly by
considering straight line trajectories (i.e., y = cz). In this
case, the “force” (&, §) must be parallel to the trajectory
(x,cx). This requires ¢ = 1/v/2 (also ¢ — —c, but then
z — —z) and § = n = 1. In this case Eq. (7) reduces
to the integrable one degree of freedom Hamiltonian
1
H, = Hy(z,pz) = Zpi — gnazz + Em:‘. (8)
We may express the periodical solutions of Eq. (8)
in terms of Jacobian elliptic functions by inverting the
quadrature integral. We obtain the class of symbiotic
snoidal waves (following the terminology introduced by
Korteweg—-DeVries [18]) of Egs. (2) and (3),

() = bo + bisn®(arlk) , y(r) ==2()/V2,  (9)

where by = x1, by = 3 — x1, a® = (z; — z2)/(3v2), and
k = /(z1 — z3)/(z1 — z2) is the modulus of the elliptic
sine sn , and z,(n = 1,2,3) are the roots of the cubic

equation E—V (z) = E+(3n/2)z?—xz3/v/2 = 0, obtained

from Eq. (8) with £ = H;(z,p,). In terms of the angle
¥ = tan"*{[24/—(n + E)E]/(2E + 1)}, these roots read

as

2
Tn = % +v2cos [% + 5 (n— 1)] (n=1,2,3), (10)
where 0 < ¥ < 7 and z2 < z3 < x;. We obtain by =
n/vV2 + V2cos(v/3), by = —/6sin(¢/3 + 27/3), a® =
sin(y/3+m/3)/v/3, and k? = [sin(v/3+27/3)]/[sin(v/3+
m/3)]. The snoidal pair (9) has period 2K (k)/c, where
K (k) is the elliptic integral of the first kind. For k — 1
(ie., ¥ — 0) K(k) - oo, and Eq. (9) reduces to the
solitary wave solution

2(r) = % 2 +n — 3tanh? (%)] ,

z(T)

y(7) ol (11)
For n = @ = —1 this requires £ — —1 and Eq. (11) repre-
sents a self-trapped dark pair. Conversely, for n =0 = 1,
k — 1 in the limit £ — 0, and Eq. (11) reduces to a
bright pair of the form z(7) = (3/v/2)cosh™?2 (t/V2).
Both these dark and bright pairs are twin waves which
travel with a common locked group velocity in the pres-
ence of a nonvanishing walk off §. In this respect they
generalize the stationary solutions previously reported
for § = 0 in optics [8-11] and in the context of field
theory for the bright case [15]. In the phase space as-
sociated to the Hamiltonian (7) the bright solution is a
homoclinic separatrix trajectory which connects the ori-
gin at 7 = —oo and 7 = 400, whereas the dark pair is a
separatrix which emanates from the equilibrium solution
(z,y) = (—v/2,—1). In general, the potential V(z,y)
has three equilibrium points: the origin and the points
(z,y) = (81,82) = (£v/2n0,0), which represent phase-
locked eigensolutions of the cw [i.e., 8/8t = 82/0t2 = 0
in Eq. (1)] two-wave interaction (arising from bifurca-
tions of the u; = 0 eigenmode [17]). Therefore a hetero-
clinic separatrix connecting the points (—+/276,0), and
(v/210,0), which are equipotential, represents a new lo-
calized solution in the form of a symbiotic domain wall
(or a kink pair). Bounded solutions of this kind may ex-
ist only for n = —1 and @ < 0. In this case the points
(¥1,u2) are saddle points of V(z,y). These trajectories
are no longer lines in the plane (z,y) and must be found
from the nonintegrable two-dimensional Hamiltonian (7).
We searched for such solutions by using a standard nu-
merical shooting method. We integrated Eq. (5) with
initial conditions sitting on the unstable manifold of one
saddle, using 6 as a shooting parameter in order to seek
trajectories that tend asympotically to the other saddle
(we then propagate backward in order to verify the so-
lution). We found a family of countable exotic solutions
which may be ordered in terms of increasing complexity.
In Fig.1 we show the trajectories in the plane (z,y), su-
perimposed to equipotential curves, as well as the wave
forms of two low-order domain wall solutions obtained
for § = —0.556 and 0 = —0.311, respectively. The first-
[z(7)] and second-harmonic [y(7)] fields are always an-
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FIG. 1. The localized domain wall of the two-wave interac-
tion for = —1. Heteroclinic trajectory superimposed to the
contour plot of the potential [(a) and (c)] and correspond-
ing field amplitudes z = z(7), and y = y(7) vs 7 [(b) and
(d)]- The curves correspond to 8 = —0.556 [(a) and (b)] and
0 = —0.311 [(c) and (d)].

tisymmetric and symmetric, respectively. It is worth
noting that these domain wall are reminiscent of those
of birefringent cubic media, where the two field compo-
nents (frequency degenerate but with different polariza-
tion) obey coupled NLSEs [19].

We checked numerically the stability of the periodi-
cal waves (9) by integrating a finite-difference scheme of
Egs. (2) and (3) with initial conditions slightly perturbed
from the exact solution. The observed bounded oscilla-
tory behavior along the propagation direction suggests
that the snoidal (as well as bright) waves are stable in
a wide range of ¢ values. Conversely, the interplay of
dispersion and nonlinearity may lead to instabilities of
the eigenmodes (@1, @2) causing the formation of tempo-
ral (or transverse) structures. In cubic media, MI (or
a Benjamin-Feir instability [13]) is a ubiquitous mech-
anism. In nonlinear optics it entails the build up of a
sideband pair by virtue of four-photon processes involv-
ing the decay of two pump photons into down- and up-
shifted photon pairs [14]. We show here that MI occurs
also in quadratic nonlinear media, involving three-photon
processes. A photon at frequency 2w annihilates, creat-
ing a photon twin (wo — Q,wo + ), whereas photons at
the sideband frequency 2w £ © are created through the
TWM process wo + (wo £ 2) = 2w £+ Q. The unstable
detunings © may be obtained by inserting into Egs. (2)
and (3) the ansatz

ul(é"'r) = [ﬁl + 61161:07— + Elze—iﬂ‘r] eiﬂﬁ’

uz(§,7) = [tz + €21 + Gzze_mT] e (20=3k)¢ (12)
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where € = €(§) = (e11,€l5, €21,€5,)7 is the perturbation
to the nonlinear eigenmode (uy,%uz) of Egs. (5)-(7). By
retaining in Egs. (2) and (3) only linear terms in €, we
end up with the linear problem

—*Q% -Q Ug Uy 0
dé . —1Ug Q% -0 0 —Uy o
=" ul 0 0-02 o & (13)
0 —TUy 0 Q4+ Q2

where Q2 = Q2/2 + 60, Q2 = Q%2/2 + 9, Q = §Q/2, and
we set By = B2 = 1, 20 — 6k = n = %1 in order to
be consistent with the transformed variables in Eq. (7).
The unstable frequencies  are those yielding at least
one eigenvalue of the imaginary matrix in Eq. (13) with
the positive real part. Let us consider, for the sake of
simplicity, stationary waves such that § = v = v =0 in
Eq. (4). Equation (13) yields the potentially unstable
eigenvalues

o V@) 1;0(9)2 —h@ »

where fo(Q2) = ~2(1+470) —2(n+6)Q2—Q* and f,(Q) =
Q2[Q8 + 4(6 + )Q* + 4Q% — 166(1 + 267)]. By imposing
f1 =0in Eq. (14) we obtain the boundary of instability.
MI occurs for 02 < Q2 < Q2 when n = —1 and for
0 < 92 < Q2 when n = 1, where Q2 = —n + /1 + 870
and Q2 = 2(1 — 26). In this case AT is real, and the
maximum MI gain g = A% is shown in Fig. 2 as a function
of  and 0, for the regime (i.e., n = —1) which allows for
the propagation of kink and dark (§ = —1) waves.

This MI is the result of combined TWM processes due
to the interplay of dispersion and quadratic nonlinear-
ity. Hence we expect that it may be relevant whenever
quadratic nonlinearities play a significant role. This may
occur, e.g., in the TWM of surface acoustic waves [20],
for resonant (i.e., complex nonlinearity) interactions in
water waves [21], as a mechanism of instability in plas-
mas [22], in optomechanical wave interactions which may
constitute a seed for MI of the optical waves [23], and
in driven-damped dissipative systems such as an opti-
cal cavity. Here we specifically show that MI affects the

FIG. 2. Modulational instability gain vs frequency detun-
ing Q, and the amplitude dependent phase shift 6.
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propagation of dark and kink waves. In Fig. 3 we show
the spatiotemporal evolution obtained numerically from
Egs. (2) and (3), for the kink pair with 6 = —0.311 [see
Fig. 2(d)]. Similar results hold for dark pairs. As shown,
after the initial stage of unperturbed propagation, the cw
backgrounds which sustain the localized wave forms start
to break up spontaneously (i.e., the perturbation was not
even seeded) into periodical patterns at the mostly un-
stable frequency (i.e., Q@ = 1.75 which yields dg/dQ = 0).
The direction of the unstable eigenvector determines the
phase shift between the two patterns. We also observed
that MI does not exhibit any recursive behavior past the
linearized stage of propagation, in contrast to MI of the
integrable cubic NLSE. On a large scale length, we ob-
served a transition to spatiotemporal turbulence involv-
ing the disordered generation of new frequencies. Our
simulations also suggest that when the cw backgrounds
are replaced by sufficiently long and smooth background
pulses, MI is no longer the prevailing instability mecha-
nism. The kink structures propagate unchanged for sev-
eral dispersion lengths until they are destroyed by the
dispersive broadening of the background tails.

Finally, we discuss the meaning of the dimensionless
parameters in terms of physical units. The total back-
ground intensity of the eigenmodes (@1, usz) is

I = |A1|? + |Az|? = (02 + 01605)(xza) "2
= 6k?(3 — 20 + B32)/[(20 — B2)(xza))?,

where x = [2w0/(c360nf,0n2w0)]1/2(1(2), and d® is the
effective susceptibility element, whereas the fraction of
second-harmonic intensity is p = |A42|2/L; = (3 — 20 +
B2)~1. For typical dispersions 81 ~ B2 = 1 ps2/m (we
consider for simplicity § = v = v = 0), and a time scale
to = 50 fsec (significant field variations occur in Fig. 1
over t = Ttg ~ 500 fsec), the dispersion length is zq4 =
2.5 mm. At Ao = 2w¢/wo = 1.06 pm, for a mismatch
6k = Akzq ~ 1, and d®/,/n2 nz., = 1 pm/V, the
condition § = —0.566 (see Fig. 1) yields a background
intensity of I; ~ 600 MW/cm2 and p ~ 0.2. The mostly
unstable angular frequency Q = 1.9 yields a modulation
at frequency f = Q/(2wto) ~ 6 Thz.

In conclusion, we have shown that the parametric two-
wave interaction in a dispersive transparent medium with
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FIG. 3. Propagation of the localized domain wall solution
for § = —0.311.

quadratic nonlinearity possesses periodical waves and ex-
otic wave forms (invariant domain walls between the non-
linear eigenmodes of the process) which travel with a
locked group velocity. A stability analysis against peri-
odic perturbations suggest that the Benjamin-Feir insta-
bility, which is characteristic of dispersive cubic media,
is a rather ubiquitous mechanism which occurs also in
media with quadratic nonlinearity.

This work was carried out under an agreement with
the Italian P.T. administration.
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